Automatic Multilevel Parallelization Using OpenMP**

F
Haogiang Jin, Gabriele Jost , Jerry Yan
NAS Division. N.ASA Ames Research Center, Moffett Field, CA 94035-1000 USA

{hjin,gjost,yan}@nas.nasa.gov

Eduard Ayguade, Marc Gonzalez, Xavier Martorell
Centre Europeu de Parallelism de Barcelona, Computer Architecture Department (UPC)
cr. Jordi Girona 1-3, Modul D6,08034 — Barcelona, Spain

{eduard,marc,xavier}@ac.upc.es

Abstract

In this paper we describe the extension of the
CAPO parallelization support tool to support multi-
level parallelism based on JpenMP directives.
CAPO generates OpenMP directives with extensions
supported by the NanosCompiler to allow for direc-
tive nesting and definition of thread groups. We
report some results for several benchmark codes and
one full application that have be :n parallelized using
our system.

1 Introduction

Parallel architectures are an nstrumental tool for
the execution of computational intensive applica-
tions. Simple and powerful programming models and
environments are required to develop and tune such
parallel applications. Current programming models
offer either library-based implementations (such as
MPI [16]) or extensions to sequential languages (di-
rectives and language constructs) that express the
available parallelism in the application, such as
OpenMP [20].

OpenMP was introduced as an industrial standard
for shared-memory programming with directives.
Recently, it has gained significant popularity and
wide compiler support. However, relevant perform-
ance issues must still be addressed which concern
programming model design as well as implementa-
tion. In addition to that, extensions to the standard
are being proposed and evaluated in order to widen
the applicability of OpenMP to a broad class of par-
allel applications without sacrificing portability and
simplicity.

What has not been clearly addressed in OpenMP
is the exploitation of multiple levels parallelism. The
lack of compilers that are able t» exploit further par-
allelism inside a parallel region has been the main
cause of this problem, which has favored the practice
of combining several programming models to ad-
dress scalability of applications to exploit multiple
levels of parallelism on a large number of processors.
The nesting of parallel constru:ts in OpenMP is a

* The author is an employee of Comyputer Sciences Corpora-
tion.

** A Preliminary version of this paper was presented at the 3
European Workshop on OpenMP (EWOMPO1)

feature that requires attention in future releases of
OpenMP compilers. Some research platforms, such
as the OpenMP NanosCompiler [9], have been de-
veloped to show the feasibility of exploiting nested
parallelism in OpenMP and to serve as testbeds for
new extensions in this direction. The OpenMP
NanosCompiler accepts Fortran-77 code containing
OpenMP directives and generates plain Fortran-77
code with calls to the NthLib thread library [17] (cur-
rently implemented for the SGI Origin). In contrast
to the SGI MP library, NthLib allows for multilevel
parallel execution such that inner parallel constructs
are not being serialized. The NanosCompiler pro-
gramming model supports several extensions to the
OpenMP standard to allow the user to control the
allocation of work to the participating threads. By
supporting nested OpenMP directives the
NanosCompiler offers a convenient way to multi-
level parallelism.

In this study, we have extended the automatic
parallelization tool, CAPO, to allow for the genera-
tion of nested OpenMP parallel constructs in order to
support multilevel shared memory parallelization.
CAPO automates the insertion of OpenMP directives
with nominal user interaction to facilitate parallel
processing on shared memory parallel machines. It is
based on CAPTools [11], a semi-automatic paralleli-
zation tool for the generation of message passing
codes, developed at the University of Greenwich.

To this point there is little reported experience
with shared memory multilevel parallelism. By being
able to generate nested directives automatically in a
reasonable amount of time we hope to be able to gain
a better understanding of performance issues and the
needs of application programs when in comes (o ex-
ploiting multilevel parallelism.

The paper is organized as follows: Section 2
summarizes the NanosCompiler extensions to the
OpenMP standard. Section 3 discusses the extension
of CAPO to generate multilevel parallel codes. Sec-
tion 4 presents case studies on several benchmark
codes and one full application.

2 The NanosCompiler

OpenMP provides a fork-and-join execution
model in which a program begins execution as a sin-
gle process or thread. This thread executes

sequentially until a PARALLEL construct is found.
At this time, the thread creates a team of threads and
it becomes its master thread. All threads execute the
statements lexically enclosed by the parallel con-
struct. Work-sharing constructs (30, SECTIONS and
SINGLE) are provided to divide the execution of the
enclosed code region among the members of a team.
All threads are independent and may synchronize at
the end of each work-sharing construct or at specific
points (specified by the BARRIER directive). Exclu-
sive execution mode is also possible through the
definition of CRITICAL and ORDERED regions. If a
thread in a team encounters a new PARALLEL con-
struct, it creates a new team and it becomes its
master thread. OpenMP v2.0 provides the
NUM_THREADS clause to restrict the number of
threads that compose the team.

The NanosCompiler extension to multilevel paral-
lelization is based on the concept of thread groups.
A group of threads is composed of a subset of the
total number of threads available in the team to run a
parallel construct. In a parallel construct, the pro-
grammer may define the number of groups and the
composition of each one. When a thread in the cur-
rent team encounters a PARALLEL construct
defining groups, the thread creates a new team and it
becomes its master thread. The new team is com-
posed of as many threads as the number of groups.
The rest of the threads are used t) support the execu-
tion of nested parallel constructs In other words, the
definition of groups establishes an allocation strategy
for the inner levels of parallelisin. To define groups
of threads, the NanosCompiler supports the GROUPS
clause extension to the PARALLEL directive.

C$OMP PARALLEL GROUPS (gspec)

C$OMP END PARALLEL

Different formats for the GROU>S clause argument
gspec are allowed [10]. The s:mplest specities the
number of groups and performs in equal partition of
the total number of threads to the groups:

gspec = ngroups

The argument ngroups specifies the number of
groups to be defined. This format assumes that work
is well balanced among groups and therefore all of
them receive the same number of threads to exploit
inner levels of parallelism. At runtime, the composi-
tion of each group is determined by equally
distributing the available threads among the groups.

gspec = ngroups, weigh:

In this case, the user specifies tbe number of groups
(ngroups) and an integer vector (weight) indicat-

ing the relative weight of the computation that each
group has to perform. From this information and the
number of threads available in the team, the threads
are allocated to the groups at runtime. The weight
vector is allocated by the user and its values are
computed from information available within the ap-
plication itself (for instance iteration space,
computational complexity).

3 The CAPO Parallelization Support Tool

The main goal of developing parallelization sup-
port tools, is to eliminate as much of the tedious and
sometimes error-prone work that is needed for man-
ual parallelization of serial applications. With this in
mind, CAPO [13] was developed to automate the
insertion of OpenMP compiler directives with nomi-
nat user interaction. This is achieved largely by use
of the very accurate interprocedural analysis from
CAPTools [11] and also benefits from a directive
browser to allow the user to examine and refine the
directives automatically placed within the code.
CAPTools provides a fully interprocedural and
value-based dependence analysis engine [14] and has
successfully been used to parallelize a number of
mesh-based applications for distributed memory ma-
chines.

3.1 Single level parallelization

The single loop level parallelism automatically
exploited in CAPO can be defined by the following
three stages (see [13] for more details of these stages
and their implementation):

1) Identification of parallel loops and parallel re-
gions — this includes a comprehensive breakdown of
the different loop types, such as serial, parallel in-
cluding reductions, and pipelines. The outermost
parallel loops are considered for parallelization so
long as they provide sufficient granularity. Since the
dependence analysis is interprocedural, the parallel
regions can be defined as high up in the call tree as
possible. This provides an efficient placement of the
directives.

2) Optimization of parallel regions and parallel
loops - the fork-and-join overhead (associated with
starting a parallel region) and the synchronizing cost
are greatly lowered by reducing the number of paral-
lel regions required. This is achieved by merging
together parallel regions where there is no violation
of data usage. In addition, the synchronization be-
tween successive parallel loops is removed if it can
be proved that the loops can correctly execute asyn-
chronously (using the NOWAIT clause).

3) Code transformation and insertion of OpenMP
directives — this includes the search for and insertion
of possible THREADPRIVATE common blocks.
There is also special treatment for private variables

in non-threadprivate common blocks. If there is a
usage conflict then the routine is cloned and the
common block variable is added to the argument list
of the cloned routine. Finally, the call graph is trav-
ersed to place OpenMP directives within the code.
This includes the identification of necessary variable
types, such as SHARED, PRIVATE, and
REDUCTION.

3.2 Extension to multilevel parallelization

Although the SGI Origin compiler does not sup-
port nested parallelism, the user can exploit
parallelism across multiple loop nests in a limited
manner. The SGI compiler accests the NEST clause
on the OMP DO directive [18]. The NEST clause
requires at least 2 variables as arguments to identify
indices of subsequent DO-loyps. The identified
loops must be perfectly nested. No code is allowed
between the identified DO stateinents and the corre-
sponding END DO statements. The nest clause on
the OMP DO directive informs the compiler that the
entire set of iterations across the identified loops can
be executed in parallel. The conpiler can then lin-
earize the execution of the loop iteration and divide
them among the available single level of threads.

CAPQ has the capability to identify suitable loop
nests and generate the SGI NEST clause. We have
extended this feature of CAIPO to support true
nested parallelism.

Our extension to OpenMP multilevel parallelism
is based on parallelism at different loop nests and
makes use of the extensions offered by the
NanosCompiler. Currently, we l:mit our approach to
only two-level loop parallelism, which s of more
practical use. The approach to automatically exploit
two-level parallelism is extended from the single
level parallelization and is illustrated in Figure 1.
Besides the data dependence aralysis in the begin-
ning he approach can be summarized in the
following four steps.

1) First-level loop analysis. This is essentially the
combination of the first two stag:s in the single level
parallelization where parallel losps and parallel re-
gions are identified and optimized at the outermost
loop level.

2) Second-level loop analysis. This step involves
the identification of parallel loops and parallel re-
gions nested inside the parall:l loops that were
identified in Step 1. These parall:l loops and parallel
regions are then optimized as before but limited to
the scope defined by the first level.

3) Second-level directive insertion. This includes
code transformation and OpenMP directives inser-
tion for the second level. The step performed before
inserting any directives in the fust-level is to ensure
a consistent picture is maintained for any variables

Serial Code

Data Dependence Analysis

Y

First Level Loop Analysis

___¢ _____________ -

Second Level Loop Analysis

3 a
i 1
v 1
1 1
¥ '
' .]
' ; v i
¥)
A '
] |
} 1
) 1

1

Second Level Directive Insertion

First Level Directive Insertion

Parallel Code

Figure 1: Steps in multilevel parallelization

and codes that may be changed or introduced during
the code transformation.

4) First-level direcrive insertion. Lastly code
transformation and OpenMP directives insertion are
performed for the outer level parallelization. All the
transformations of the last stage of the single level
parallelization are being performed, with the excep-
tion that we disallow the THREADPRIVATE
directive. Compared to single level parallelization,
the two-level parallelization process requires the
additional steps indicated in the dash box in Figure 1.

3.3 Implementation consideration

In order to maintain consistency during the code
transformations that occur during the parallelization
process we need to update data dependencies prop-
erly. Consider the example, where CAPO transforms
an array reduction into updates to a local variable.
This is followed by an update to the global array tn a
CRITICAL section to work around the limitation on
reduction in OpenMP vl1.x. The data dependence
graph needs to be updated to reflect the change due
to this transformation, such as associating depend-
ence edges related to the original variable to the local
variable and adding new dependences for the local
variable from the local updates to the global update.
Performing a full data dependence analysis for the
modified code block is another possibility but this
would not take advantage of the information already
obtained from the earlier dependence analysis.

When nested parallel regions are considered, the
scope of the THREADPRIVATE directive is not clear
any more, since a variable may be threadprivate for
the outer nest of parallel regions but shared for the
inner parallel regions, and the directive cannot be

bound to a specific nest level. The OpenMP specifi-
cation does not properly address this issue. Our
solution is to disallow the THREADPRIVATE direc-
tive when nested parallelism 1s considered and treat
any private variables defined in :ommon blocks by a
special transformation as mentio1ed in Section 3.1.

The scope of the synchronizaiion directives has to
be carefully followed. For ex:mple, the MASTER
directive is not allowed in the ex:ent of a PARALLEL
DO. This changes the way a scftware pipeline (see
[13] for further explanation) can be implemented if it
is nested inside an outer parallel loop.

CAPO detects opportunities for software-
pipelined execution of loops wiere data dependen-
cies prevent parallelization. Suc1 loops are enclosed
by a parallel region. The iteraticn space of the loops
is divided up among the threads using the OMP DO
directive. The threads then explicitly synchronize
their execution with their neighbors. This is dis-
cussed in greater detail in Section 4.2 and an
example for a one-dimensional sipeline is shown in
Figure 5. The CAPO extensiors to support nested
parallelism include software pipelining. The follow-
ing example shows how CAPO exploits 2 levels of
parallelism in a loop nest where only the outer loop
is truly parallel. Assume we have a nest containing
two loops:

DO K=1,NK
DO J=2,NJ
A(J,K) = A(J,K) ¢ A(J-1,K)
The outer loop K is parallel and :he inner loop J can
be set up with a pipeline. After inserting directives at
the second level to set up the pipeline, we have

!$OMP PARALLEL

DO K=1,NK
!..point-to-point sync directive
1SOMP DO
DO J=2,NJ
A(J,K) = A(J,K) + A(J-1,K)

The implementation of the point-to-point synchroni-
zation with directives is illustrated in Section 4.2. In
order to parallelize the K loop at the outer level, we
need to first transtorm the loop iato a form such that
the outer-leve! directives can be added. It is achieved
by explicitly calculating the K-loop bound for each
outer-level thread as shown in the following codes:

1$OMP PARALLEL DO GROUPS(ngroups)
DO IT=1,omp_get_num threads()
CALL calc_bound(I17,1,NK,
> low,high)
1SOMP PARALLEL
DO K=low,high
!, .point-to-point sync directive
ISOMP DO
DO J=2,NJ
A(J,K) = A(J.F) + A(J-1,K)

The function “calc_bound” cilculates the X loop
bound (1low, high) for a given T (the thread num-

ber) from the original X loop limit. Only then are the
first-level directives added to the IT loop (instead of
the K loop). The method is not as elegant as one
would prefer, but it points to some of the limitations
with the nested OpenMP directives. In particular we
would not be able to set up a two-dimensional pipe-
line, since it would involve synchronization of
threads from two different nest levels. We will dis-
cuss the problem of two-dimensional pipelining in
one of our case studies in Section 4.2.

One of the contributions by the NanosCompiler to
support mnested directives is the GROUPS clause,
which can be used to define the number of thread
groups to be created at the beginning of an outer-nest
parallel region. In our implementation, the GROUPS
directive containing a single shared variable
‘ngroups’ is generated for all the first-level paral-
lel regions. The ngroups variable is placed in a
common block and can be defined by the user at run
time. Although it would be better to generate the
GROUPS clause with a weight argument based on
different workloads of parallel regions, this is not
considered at the moment.

The nested loop:

DO K=1,NK
RHO = 1/NORMK (K)
DO J=2,NJ
A(J,K) = A(J,K) + RHO* B(J,K)
END DO
END DO

will be transformed by CAPO into:

1$OMP PARALLEL GROUPS (ngroups)
1$OMP& PRIVATE (RHO, K)
1$OMP DO
DO K=1,NK
RHO = 1/NORMK (K)
!$OMP PARALLEL DO PRIVATE (J)

DO J=2,NJ
A(J,K) = A{(J,K) + RHO* B(J,K)
END DO
{$OMP END PARALLEL DO
END DO

!$OMP END DO NOWAIT

{$OMP END PARALLEL

Note that for this loop the SGI NEST clause is not
applicable, since there is a statement between DO K
and DO J.

4 Case Studies

In this section we show examples for successful
and not so successful automatic multilevel paralleli-
zation. We have parallelized the three application

benchmarks (BT, SP, and LU) from the NAS Parallel
Benchmarks [4] and the ARC3D [22] application
code using the CAPO multileve! parallelization fea-
ture and examined its effectiveness.

In each of our experiments we generate nested
OpenMP directives and use the NanosCompiler for
compilation and building of the executables. As dis-
cussed in Sections 2 and 3, the nested parallel code
contains the GROUPS clause at the outer level. Ac-
cording to the OpenMP standird, the number of
executing threads can be specificd at runtime by the
environment variable OMP_NUM_THREADS. We
introduce the environment variable
NANOS_GROUPS and modify the source code to
have the main routine check the value of this variable
and set the argument to the GRCUPS clause accord-
ingly. This allows us to run the same executable not
only with different numbers of threads, but also with
different numbers of groups. We compare the tim-
ings for different numbers of groups to each other.
Note that single level parallelizat:on of the outer loop
corresponds to the case that the number of executing
threads is equal to the number of groups, i.e. there is
only one thread in each group. We compare these
timings to those resulting from compilation with the
native SGI compiler, which supports only the single
level OpenMP parallelization :nd serializes inner
parallel loops.

The timings were obtained or: a SGI Origin 2000
with R12000 CPUs, 400MHz clock, and 768MB
local memory per node

4.1 Successful multilevel pzrallelization: the
BT and SP benchmarks

The NAS Parallel Benchmarks BT and SP are
both simulated CFD applications with a similar
structure. They use an implicit algorithm to solve the
3D compressible Navier-Stokes :quations. The x, y,
and z dimensions are decoupled by usage of an Al-
ternating Direction Implicit (ADI) factorization
method. In BT, the resulting systems are block-
tridiagonal with 5x5 blocks. The systems are solved
sequentially along each dimensicn. SP uses a diago-
nalization method that decouples each block-
tridiagonal system into three inde¢pendent scalar pen-
tadiagonal systems that are solved sequentially along
each dimension.

A study about the effects of single level
OpenMP parallelization of the NAS Parallel Bench-
marks can be found in [12]. In our experiments we
started out with the same serial implementation of
the codes that was the basis for the single level
OpenMP implementation as described in [12]. We
ran class A (64x64x64 grid points), B (102x102x102
grid points), and C (162x162x 162 grid points) for

—
i BT Class A (Problem size 64x64x64)
i
[}
°
g 0 SGIOpenMP
} 8 |DSGI OpenMP + NEST |
2 iﬂNanos Outer
; LDNanos Nested
E
=
Number of threads
SP Class A (Probiem size 64x64x64)
N
-]
<
8 TSG! OpenhP
8 QSGI OpenMP + NEST
c BNanos Quter
; DNanos Nesled
E
‘_
Number of threads

Figure 2: Timing results for class A benchmarks.

the BT and SP benchmarks. As an example we show
timings for problem class A for both benchmarks in
Figure 2.

The programs compiled with the SGI OpenMP
compiler scale reasonably well up to 64 threads, but
do not show any further speed-up if more threads are
being used. For a small number of threads (up to 64),
the outer level parallel code generated by the Nanos
Compiler runs somewhat slower than the code gen-
erated by the SGI compiler, but its relative
performance improves with increasing number of
threads. When increasing from 64 to 128 threads, the
multilevel parallel code still shows a speed-up, pro-
vided the number of groups is chosen in an optimal
way. We observed a speed-up of up to 85% for 128
threads. In Figure 3 we show the speed-up resulting
from nested parallelization for three problem classes
of the SP and BT benchmarks. We denote by

o SGI OpenMP: the time for outer locp

parallelization using just the native SGI
compiler,

e SGI OpenMP+NEST: The time for outer loop
parallelization using the SGI NEST clause if
applicable.

e Nanos Outer: the time for outer loop
parallelization using the N inosCompiler,

» Nanos Nested: the minimal time for nested
parallelization using the N.inosCompiler.

The timings show that the SCI NEST clause is of
limited benefit. It improves the performance of the
BT benchmark slightly, but it does not help the SP
benchmark. The time consuming routines in the two
benchmarks are the three solvers in x, y, and z-
direction and the computation of the right hand side.
In case of BT, CAPO parallelized 28 loops, 11 of
which were suitable for the NEST clause. This in-
cludes the major loops in the three solver routines.
The time consuming loops in tte calculation of the
right hand side are not suitable for the NEST clause,
since they contain statements between the DO state-
ments. The situation is a lot worse for the SP
benchmark. CAPO parallelized 31 loops. The NEST
clause could be generaied for 11 of them. The three
main loops in the solver routines were not suitable
for the NEST clause, because the inner loops are
enclosed in subroutine calls. The computation of the
right hand side contains nested loops that are not
tightly nested, just like in the cate of BT. The NEST
clause could only be applied to loops with a very low
workload. In this case, distributiag the work in mul-
tiple dimensions leads to a slight decrease of
performance for a small number of threads.Neither
the occurrence of code between the DO statements
nor inner loops enclosed within subroutine calls
poses an obstacle to nested parallel regions supported
by the NanosCompiler. For the BT benchmark
CAPO nparallelized 13 of the 2& parallel loops em-
ploying nested parallel regions and the GROUPS
clause. For the SP benchmark CAPO identified 17 of
the 31 parallel 31 loops, as suitanle for nested paral-
lelism. In both benchmarks the most time consuming
loops are parallelized in two dirnensions. All of the
nested parallel loops are at least triple nested. The
structure of the loops is such tha: the two outer most
loops can be parallelized. The inner parallel loops
enclose one or more inner loops and contain a rea-
sonably large amount of computational work.

The reason that multilevel parallelism has a positive
effect on the performance of these loops is mainly
due to the fact that load balancing between the
threads is improved. For class A, for example, the
number of iterations is 62. If only the outer loop is
parallelized, using more than 62 threads will not im-
prove the performance any further. In the case of 64
threads, 2 of them will be idling. If, however, the
second loop level is also parallelized, all 64 threads
can be put to use. Our experiments show that by
choosing the number of groups too small, the per-
formance will actually decrease. Setting the number
of groups to 1 effectively moves the parallelism
completely to the inner loop, which will in most
cases be less efficient than parallelizing the outer
loop.

In Table 1 we show the maximal and minimal

BT Speed-up with Nested Farallelization

BClass A
®Class 8
< |0Class C

SGI OpenMP/Nanos Minimal
Lov T = R v |
- o O —

02

o

8 16 32 64 128
Number of Threads

SP Speed-up with Nested Parallelization

@

1.6 1
3
E 144
£
=12 d
H 1 6Class A
g
z Class B
c 08 <
] QClass C
§ 06
o
© 04
c]
“ao2
0+

Number of Threads

Figure 3: Speed-up due to nested parallelism.

number of iterations (for class A) of the inner paral-
lel loop that a thread has to execute, depending on
the number of groups.

Groups Max # Iters | Min # Iters
64 62 0

32 62 31

16 64 45

8 64 49

4 64 45

Table 1: Thread workload for the class A
problems BT and SP.

To give a flavor of how the performance of the
multilevel parallel code depends on the grouping of
threads we show timings for the BT benchmark on
64 threads and varying number of groups in Figure 4.
The timings indicate that good criteria to choose the
number of groups are:
e Efficient granularity of the parallelism, i.e., the
number of groups has to be sufficiently small.
In our experiments we observe that the number
of groups should not be sinaller than the num-
ber of threads within a gro p.

e The number of groups hau to be large enough
to ensure a good balancing of work among the
threads.

BT Benchmark with 64 Threads

Nanos Outer/ Nanos Nested
o
@

=)
-

=}
N

Class W Cless A Class B Class C

Banchmark Class

Figure 4: Timings of BT with varying number
of thread groups.

4.2 The need for OpenMI’ extensions: the
LU benchmark

The LU application benchmark is a simulated
CFD application that uses the symmetric successive
over-relaxation (SSOR) methoc to solve a seven
band block-diagonal system resulting from finite-
difference discretization of the 3D compressible Na-
vier-Stokes equations by splitting it into block lower
and block upper triangular systems.

As starting point for our tests we choose the pipe-
lined implementation of th: parallel SSOR
algorithm, as described in [12]. The example below
shows the loop structure of the lower-triangular
solver in SSOR. The lower-triangular and diagonal
systems are formed in routine JACLD and solved in

routine BLTS. The index K corresponds to the third
coordinate direction.

DO K = KST, KEND
CALL JACLD (K}
CALL BLTS (K)

END DO

SUBRCUTINE BLTS

Do J = JST, JEND
Loop_Bedy (J,K)

END DO

RETURN

END

All of the loops involved carry data dependencies
that prevent straightforward parallelization. There is,
however, the possibility to exploit a certain level of
parallelism by using software pipelining as described
in Section 3.3. To set up a pipeline for the outer loop,
thread O starts to work on its first chunk of data in K
direction. Once thread O finishes, thread 1 can start
working on its chunk for the same K and, in the
meantime, thread 0 moves on to the K+1. The direc-
tives generated by CAPO to implement the pipeline
for the outer loop are shown in Figure 5.

The K loop is placed inside a parallel region. Two
OpenMP library functions are called to obtain the
current thread identifier (iam) and the total number
of threads (numt). The shared array isync is used
to indicate the availability of data from neighboring
threads. Together with the FLUSH directive in a
WHILE loop it is used to set up the point-to-point
synchronization between threads. The first WHILE
ensures that thread iam will not start with its slice of
the J loop before the previous thread has updated its
data. The second WHILE is used to signal data avail-
ability to the next thread.

The NanosCompiler team is currently defining
and implementing OpenMP extensions to easily ex-
press the precedence relations that originate
pipelined computations. These extensions are also
valid in the scope of nested parallelism. They are
based on two components:

o The ability to name work-sharing constructs
(and therefore reference any piece of work
coming out of it).

¢ The ability to specify predecessor and succes-
sor relationships between named work-sharing
constructs (PRED and SUCC clauses).

This avoids the manual transformation of the loop
to access data slices and manual insertion of syn-
chronization calls. From the new directives and
clauses, the compiler automatically builds synchro-
nization data structures and insert synchronization
actions following the predecessor and successor rela-

tionships defined [8]. Figure 6 shows the pipelined
loop from Figure 5 when using tie new directives.

1$OMP PARALLEL PRIVATE (K, iam,numt)
iam = omp_get_thread_ aum()
numt = omp_get_num_th eads ()
isync{iam) = 0
1$OMP BARRIER
DO K = KST, KEND
CALL JACLD (K)
CALL BLTS (K)
END DO
1$OMP END PARALLEL
SUBROUTINE BLTS (K)

if (iam .gt. 0 .and.
iam .lt. numt) then
do while{isync(iam-.) .eg. 0)
1$OMP FLUSH(isync)
end do
isync(iam-1) = 0
1$OMP FLUSH(isync)
end if
1$OMP DO
DO J = JST, JEND
Loop_Body {(J,K)
END DO
!$OMP END DO nowait
if (iam .1lt. numt) then
do while (isync(iam) .eqg. 1)
1$0OMP FLUSH(isync)
end do
isync (iam) = 1
!$OMP FLUSH(isync)
endif
RETURN
END

new NanosCompiler directives, and a 2-dimensional
pipelined implementation based on MPI. The com-
piler directives based implementation shows about
the same performance as the hand-coded synchroni-
zation.

LU Class A Timings

200
180
160

g 140 —

g 120 H D Expiicit Sync
u:: 100 & : BPRED/SUCT
s 80 2 = = | mMPI

E

e

60
40
20

Number of Threads

Figure 5: The one-dimensior:al parallel pipe-
line implemented in LU.

!$OMP PARALLEL PRIVATE(K,iam,numt)

DO K = KST, KEND
CALL JACLD (K)
CALL BLTS (K}
END DO
{$OMP END PARALLEL
SUBROUTINE BLTS (K)

1$OMP DO NAME (inner_loop)
DO J = JST, JEND
1$OMP PRED (inner_loop, j-1)
Loop_Rody (J,K)
1$OMP SUCC (inner_loop, j+1)
END DO
!$OMP END DO nowait

RETURN
END

Figure 6: One-dimensional pipeline using di-
rectives

In Figure 7 we show the timings for LU benchmark
comparing the one-level pipelined implementation
using the synchronization mecharism from Figure 3,
the one-level pipelined implem:ntation using the

Figure 7: Timings for different implementations
of LU

The performance of the pipelined parallel imple-

mentation of the LU benchmark is discussed in [12].
The timings in Figure 7 show that the directive based
implementation does not scale as well as a message
passing implementation of the same algorithm. The
cost of pipelining results mainly from wait during
startup and finishing. The message-passing version
employs a 2 dimensional pipeline where the wait
cost can be greatly reduced. The use of nested
OpenMP directives offers the potential to achieve
similar scalability to the message passing implemen-
tation.
There is, however, a problem in setting up a direc-
tive-based two-dimensional pipeline. The new
directives allow synchronization of threads within
one team and synchronization between different
teams.

The structure of the Loop_Body depicted in Fig-
ure 5 looks like:

DO I = ILOW, IHIGH
DCM =1, 5
TV(M,I,J)= V(M,I,J,K-1)
+ V(M,I,J-1,K)
+ V(M,I-1,J,K)
END DO

DOM=1, 5
V(M,I,J,K)= TV(M,I,J)
END DO
END DO

If both J- and I-loop are to be parallelized employing
pipelines, a thread would need to be able to synchro-
nize with its neighbor in the J- and I-directions on
different nesting levels. Parallelizing the I-loop with
OpenMP directives introduces an inner parallel re-

gion, as shown below (see also the discussion in Sec-
tion 3.3)

1$OMP PARALLEL
synchronizationl
1$OMP DO
DO JT = ...
{$OMP PARALLEL €
DO J = JLOW, JHIGH
Synchronization2
1$OMP DO
DO I = ILOW, IHIGH
END DO
{SOMP END DO NOWAIT
Synchronization2
END DO
1$0OMP END PARALLEL €
END DO
1$OMP END DO NOWAIT
synchronizationl

The end of the inner paralle region forces the
threads to join and destroys the multilevel pipeline
mechanism. In order to set up a 2-dimensional pipe-
line, two possibilities should be taken into account.
The first one is removing the implicit barrier at the
end of the inner parallel region. Such a NOWAIT
clause is not available in OpenMP but could be eas-
ily implemented in the comrpiler. The second
alternative is the use of nested OMP DO directives
within the same parallel region. This is an extension
also proposed to OpenMP and available in the native
SGI compiler. This simply uses one level of parallel-
ism but performs a two-dimens onal distribution of
work. The loop structure of meny time consuming
loops in the LU benchmark is suitable for the SGI
NEST clause, but the SGI compiler does not provide
extensions for explicit thread synchronization. As we
have seen in Section 4.1, the rectrictions to applica-
tion of the NEST clause greatly limit its usage for
many time consuming loops. It would be desirable to
have these restrictions removed Code between the
DO statements could be handled by having only part
of the threads executing these sta ements. In case that
the inner loop is enclosed in a subroutine call, more
complicated techniques, involving procedure in-
lining are necessary.

4.3 Unsuitable loop structur: in ARC3D

ARC3D uses an implicit scheme to solve Euler
and Navier-Stokes equations in 1 three-dimensional
(3D) rectilinear grid. The main component is an ADI
solver, which results from the approximate factoriza-
tion of finite difference equutions. The actual
implementation of the ADI solver (subroutine
STEPF3D) in the serial ARC3D s illustrated in Fig-
ure 6. It is very similar to the SP benchmark.

BC Boundary Condition
I
' RHS ———{7Exp]icit Right-Hand-Side
|
FILTER3D Artificial Dissipation Terms
]
TKINV (X) Foreach L:
| form LHS for (J,K) plane
XI solver VPENTAD3 -- solve first 3
VPENTA --solve 4 & 5
NPINV I
I (Y) For each L:
ETA solver form LHS for (K,J) plane
I VPENTAD3 -- solve first 3
NPINV VPENTA --solve 4 & 5
1
ZETA solver
(Z) For each K:
form LHS for (L,J) plane
VPENTA3 -- solve first 3
- VPENTA --solve 4 & 5
update solution

Figure 6: The schematic flowchart of the ADI
solver in ARC3D.

For each time step, the solver first sets up bound-
ary conditions (BC), forms the explicit right-hand-
side (RHS) with artificial dissipation terms
(FILTER3D), and then sweeps through three direc-
tions (X, Y and Z) to update the 5-element fields,
separately. Each sweep consists of forming and solv-
ing a series of scalar pentadiagonal systems in a two-
dimensional plane one at a time. Two-dimensional
arrays are created from the 3D fields and are passed
into the pentadiagonal solvers (VPENTA3 for the
first 3 elements and VPENTA for the 4 and 5th ele-
ments, both originally written for vector machines),
which perform Gaussian eliminations. The solutions
are then copied back to the three-dimensional resid-
val fields. Between sweeps there are routines
(TKINV. NPINV and TK) to calculate and solve
small, local 5x5 eigensystems. Finally the solution is
updated for the current time step.

We ran ARC3D for two different problem sizes.
In both cases the performance dropped by 10% to
70% when the number of groups was smaller than
the number of threads, i.e. when multilevel parallel-
ism was used. Example timings for both problem
sizes and 64 threads are given in Figure 7. The tim-
ings for outer level parallelism are given in Figure 8.

Even though the time consuming solver in
ARC3D is similar to the one in the SP benchmark,
our approach to automatic multlevel parallelization
was not successful. For ARC3D CAPO identified 58
parallel loops, 35 of which were suitable for nested
parallelization. 19 of the 35 nested parallel loops had
very little work in the inner parcllel loop and ineffi-
cient memory access. An example is shown below.

1 $OMP PARALLEL DO GROUPS (ngroups)
1$OMP& PRIVATE (AR, BR,CR, DR, ER)
DO K = KLOW, KUP

!$OMP PARALLEL DO

DO L = 2, LM
DO J = 2, IM
AR(L,J) = AR(L,J) + V(J,K,L)
BR(L,J) = BR{(L,J) 4 V{(J,K,L)
CR(L,J) = CR(L,J) + V(J,K,L)
DR(L,J) = DR(L,J) 4+ V(J,K,L)
ER(L,J) = ER(L,J) 4 V(J,K,L)
CR{(L,J) = CR{L,J) + 1.
END DC

END DO

END DO

Parallelizing the L loop increases the execution time
of the loop considerably due tc a high number of
cache invalidations. The occurrence of many such
loops in the original ARC3D code nullifies the bene-
fits of a better load balance and we see no speed-up
for multilevel parallelism.

The NEST clause could be applied to the same 35
loops that were suitable for nested parallelization.
However, just like the nested parallel regions, the
NEST clause did not improve the performance of the
code.

ARC3D Nested Parallelism Timings

.
o

@64 groups
i | W32 groups
016 groups

Time in seconds
8] ()
Q o

a

(=]

184x134x194

64x64x64
Probiem size

Figure 7: Timings of ARC3D with varying
number of thread groups for a given total of 64
threads.

The example of ARC3D shov:s that parallelizing
all loops in an application indiscriminately on two
levels with the same name number of groups and the
same weight for each group may actually increase

10

ARC3D Timings for Probelm size 64x64x64

| BSGI CpenMP
OSG! OpenMP+NEST

Time in seconds

Number of threads

ARC3D Timings for Problem size
194x194x194

O SGI OpenMP
D SGI OpenMP+NEST
@ Nanos Outer

Time in seconds

Number of threads

Figure 8: Timings from the outer level paral-
lelization of ARC3D.

the execution time. At the least we will need to ex-
tend the CAPO directives browser to allow the user
inspection of all multilevel parallel loops and possi-
bly perform code transformations or disable nested
directives.

5 Related work

There are a number of commercial and research
parallelizing compilers and tools that have been de-
veloped over the years. Some of the more notable
ones include Superb [24], Polaris [6], Suif [24]
KATI’s toolkit [15], VAST/Parallel [21], and FOR-
Gexplorer [1]

Regarding OpenMP directives, most current
commercial and research compilers mainly support
the exploitation of a single level of parallelism and
special cases of nested parallelism (e.g. double per-
fectly nested loops as in the SGI MIPSpro compiler).
The KAVIntel compiler offers, through a set of ex-
tensions to OpenMP, work queues and an interface
for inserting application tasks before execution
(WorkQueue proposal [23]). The KAI/Intel proposal
mainly targets dynamic work generation schemes
(recursions and loops with unknown loop bounds).
At the research level, the Illinois--Intel Multithread-
ing library [7] provides a similar approach based on

work queues. In both cases, there is no explicit (at
the user or compiler level) contr>l over the allocation
of threads so they do not suppot the logical cluster-
ing of threads in the multilevel structure, which we
think is necessary to allow good work distribution
and data locality exploitation.

Compagq recently announced the support of nested
parallel region by its Fortran corapiler for Tru64 sys-
tems [3]. The Omni compiler [19], which is part of
the Real World Computing Pigject, also supports
nested parallelism through OpenMP directives.

There are a number of papers reporting experi-
ences in combining multiple programming
paradigms (such as MPI and penMP) to exploit
multiple levels of parallelism. Eowever, there is not
much experience in the parallelization of applica-
tions with multiple levels of parcllelism simply using
OpenMP. Implementation of nested parallelism by
means of controlling the allocation of processors to
tasks in a single-level parallelism environment is
discussed in [5]. The authors show the improvement
due to nested parallelization.

Other experiences using nested OpenMP direc-
tives with the NanosCompiler are reported in [2]. In
the examples discussed there, th:: directives have not
been automatically generated.

6 Project Status and Future Plans

We have extended the CAPO automatic paralleli-
zation support tool to automatically generate nested
OpenMP directives. We used th: NanosCompiler to
evaluate the efficiency of our approach. We con-
ducted several case studies which, showed that:

e Nested parallelization was useful to improve

load balancing.

e Nested parallelization can be counter produc-
tive when applied without considering
workload distribution and memory access
within the loops.

¢ Extensions to the OpenMP standard are needed
to implement nested parallel pipelines.

We are planning to enhance the CAPO directives
browser to allow the user to view loops, which are
candidates for nested parallelization. Nested paral-
lelization may then be turned on selectively and
necessary loop transformations can be performed.
We are also considering the automatic determination
of an appropriate number of groups and the assign-
ment of different weights to the groups. Currently
CAPO is also being extended to support hybrid par-
allelism which combines coarse-grained
parallelization based on messag: passing and fine-
grained parallelization based on directives.

We plan to conduct further case studies to com-
pare the performance of parallelization based on
nested OpenMP directives with hybrid and pure mes-
sage passing parallelism.

11

Acknowledgments

The authors would like to thank Rob Van der
Wijngaart and Michael Frumkin of NAS and Jesus
Labarta from CEPBA for reviewing the paper and
the suggestions they made for improving it. The au-
thors also wish to thank the CAPTools team (C.
Ierotheou, S. Johnson, P. Leggett, and others) at the
University of Greenwich for their support on CAP-
Tools. This work was supported by NASA contracts
NAS 2-14303 and DTTS59-99-D-00437/A61812D
with Computer Sciences Corporation and by the
Spanish Ministry of Science and Technology under
contract CICYT 98-511.

References

[1] Applied Parallel Research Inc., “FORGE Ex-
plorer,” http://www.apri.com/.

[2] E. Ayguade, X. Martorell, J. Labarta, M. Gon-
zalez and N. Navarro, “Exploiting Multiple
Levels of Parallelism in OpenMP: A Case
Study”, Proc. Of the 1999 International Confer-
ence on Parallel Processing, Ajzu, Japan,
September 1999.

[3] Compaq Fortran Release Notes for Compaq
Tru64 UNIX Systems April 2001,
http://wwwS.Compag.com/fortran/docs/unix-
um/relno.htm

[4] D. Bailey, T. Harris, W. Saphir, R. Van der
Wijngaart, A. Woo, and M. Yarrow, “The NAS
Parallel Benchmarks 2.0,” RNR-95-020, NASA
Ames Research Center. 1995. NPB23,
http://www.nas.nasa.gov/Software/NPB/.

[5] R. Blikberg and T. Sorevik. “Nested Parallel-
ism: Allocation of Processors to Tasks and
OpenMP Implementation”. 2™ European Work-
shop on OpenMP. Edinburgh. September 2000.

[6] Blume W., Eigenmann R., Faigin K., Grout J.,
Lee J., Lawrence T., Hoeflinger J., Padua D.,
Paek Y., Petersen P., Pottenger B., Rauchwerger
L., Tu P., Weatherford S. “Restructuring Pro-
grams for High-Speed Computers with Polaris,
1996 ICPP Workshop on Challenges for Paral-
lel Processing”, pages 149-162, August 1996.

[7] M. Girkar, M. R. Haghighat, P. Grey, H. Saito,
N. Stavrakos and C.D. Polychronopoulos. Illi-
nois-Intel Multithreading Library:
Multithreading Support for Intel. Architecture--
based Multiprocessor Systems. Intel Technology
Journal, Q1 issue, February 1998.

[8] M. Gonzalez, E. Ayguadé, X. Martorell and J.
Labarta. Defining and Supporting Pipelined
Executions in OpenMP. 2™ International Work-
shop on OpenMP Applications and Tools. July
2001.

[9] M. Gonzalez, E. Ayguadé, X. Martorell, J. La-
barta, N. Navarro and J. Oliver. NanosCompiler:
Supporting Flexible Multilevel Parallelism in

OpenMP. Concurrency: Fractice and Experi-
ence. Special issue on OpenMP. vol. 12, no. 12.
pp. 1205-1218. October 2000.

[10] M. Gonzalez, J. Oliver, X. Martorell, E. Aygua-
dé, J. Labarta anl N. Navarro.
“OpenMP Extensions for Thread Groups and
Their Run-time Support”. 13" International
Workshop on Languages and Compilers for
Parallel Computing (LCPC’2000), New York
(USA). pp. 317-331. August, 2000.

[11]C.S. Ierotheou, S.P. Johnson, M. Cross. and P.
Leggett, “Computer Aided Parallelisation Tools
(CAPTools) — Conceptual Overview and Per-
formance on the Parallelisation of Structured
Mesh Codes,” Parallel Computing, 22 (1996)
163-195. http://captools.gre ac.uk/

[12} H. Jin, M. Frumkin, and J. Yan, “The OpenMP
Implementations of NAS Jarallel Benchmarks
and Its Performance”, NAS Technical Report
NAS-99-011, 1999.

[13]H. Jin, M. Frumkin and J. Yan. “Automatic
Generation of OpenMP Directives and Its Ap-
plication to Computational Fluid Dynamics
Codes,” in Proceedings o:” Third International
Symposium on High Performance Computing
(ISHPC2000), Tokyo, Japan, October 16-18,
2000.

[14] S.P. Johnson, M. Cross and M. Everett, “Exploi-
tation of Symbolic Information In Interprocedural
Dependence Analysis,” Parllel Computing, 22,
197-226, 1996.

(151 Kuck and Associates, Inc., “Parallel Perform-
ance of Standard Code: on the Compag
Professional Workstation 8000: Experiences
with Visual KAP and the KAP/Pro Toolset un-
der Windows NT,” Champaign, IL,
Assure/Guide Reference Manual,” 1997,

Interface, http://www-

[16] Message Passing
unix.mes.anl.gov/

[17] X. Martorell, E. Ayguadé, N. Navarro, J. Corba-
lan, M. Gonzalez and J. Labarta.
“Thread Fork/join Techniques for Multi-level
Parallelism Exploitation in NUMA Multiproces-
sors”. 13™ International Conference on
Supercomputing (ICS’99), Rhodes (Greece). pp.
294-301. June 1999.

[18] MIPSPro 7 Fortran 90 Commands and Direc-
tives Reference Manual 007-3696-03

[19] Omni: RCWP OpenMP Compiler Project,
http://www .hpcc.jp/omni

{20] OpenMP Fortran/C Application Program Inter-
face, htip://www.openmp.org/.

[21] Pacific-Sierra Research, “VAST/Parallel Auto-
matic Parallelizer,” hitp://www . psrv.com/.

[22] T.H. Pulliam, “Solution Methods In Computa-
tional Fluid Dynamics,” Notes for the von
Kdrman Institute For Fluid Dynamics Lecture
Series, Rhode-St-Genese, Belgium, 1986.

[23]S. Shah, G. Haab, P. Petersen and J. Throop.
Flexible Control Structures for Parallelism in
OpenMP. In 1st European Workshop on
OpenMP, Lund (Sweden), September 1999.

[24] Wilson R.P, French R.S,Wilson C.S, Amaras-
inghe S.P, Anderson J.M, Tjiang S.W K, Liao S,
Tseng C., Hall M.W, Lam M. and Hennessy J.,
“SUIF: An Infrastructure for Research on Par-
allelizing and Optimizing Compilers” Computer
Systems Laboratory, Stanford University, Stan-
ford, CA.

[25] Zima H P, Bast H -J, and Gerndt H M,
“SUPERB- A Tool for Semi-Automatic
MIMD/SIMD Parallelisation” Parallel Comput-
ing. 6, 1988.

